Sera from patients with type 2 diabetes contain agonistic autoantibodies against G protein-coupled receptors

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Scandinavian Journal of Immunology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>SJI-08-264.R2</td>
</tr>
<tr>
<td>mstype:</td>
<td>Letter to the Editor</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>17-Apr-2009</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Hempel, Petra; E.R.D.E. e.V.
Karczewski, Peter; E.R.D.E. e.V.
Kohnert, Klaus-Dieter; Institute of Diabetes "Gerhard Katsch"
Raabe, Jürgen; Asklepios Hospital, Department of Diabetology
Lemke, Bernd; E.R.D.E. e.V.
Kunze, Rudolf; E.R.D.E. e.V.
Bimmler, Marion; E.R.D.E. e.V. |
| Keywords: | Autoimmunity, Diabetes < Autoimmunity, Autoantibodies < Molecules, Cell Surface Molecules < Molecules, Human < Subject |
Title:
Sera from patients with type 2 diabetes contain agonistic autoantibodies against G protein-coupled receptors

Running title:
Agonistic autoantibodies in type 2 diabetes

Authors:
Petra Hempel, BS, E.R.D.E. e.V., Campus Berlin-Buch, Berlin, Germany
Peter Karczewski, PhD, E.R.D.E. e.V., Campus Berlin-Buch, Berlin, Germany
Klaus-Dieter Kohnert, MD, PhD, Institute of Diabetes “Gerhardt Katsch” Karlsburg e.V., Karlsburg, Germany
Jürgen Raabe, MD, Department of Diabetology, Asklepios Hospital, Birkenwerder, Germany
Bernd Lemke, Dipl Ing, E.R.D.E. e.V., Campus Berlin-Buch, Berlin, Germany
Rudolf Kunze, PhD, E.R.D.E. e.V., Campus Berlin-Buch, Berlin, Germany
Marion Bimmler, Dipl Ing, E.R.D.E. e.V., Campus Berlin-Buch, Berlin, Germany

Corresponding author:
Peter Karczewski, E.R.D.E. e.V., Campus Berlin-Buch, Building 55 (OCVH)
Robert-Rössle-Straße 10, 13125 Berlin, Germany
Phone: +49 (30) 9489-2222, Fax: +49 (30) 9489-2229
e-mail: karczewski@aak-diagnostik.de

word count text: 519

Clinical Immunology
To the Editor

Agonistic autoantibodies (agAAB) directed against G protein-coupled receptors (GPCR) have been identified in dilated cardiomyopathy and different diseases with vascular complications such as hypertension [1], preeclampsia [2] and vascular necrotic kidney graft rejection [3]. Notably, hypertension, which dominantly associates with agAAB directed against the \(\alpha_1 \)-adrenergic receptor (\(\alpha_1 \)-AR), often combines with diabetes [1,4]. Animal studies demonstrated that agAAB cause dilated cardiomyopathy and preeclampsia [5,6]. Furthermore, the potential pathogenic role of \(\alpha_1 \)-AR-activating agAAB was recently described in refractory hypertension [7]. AgAAB preferentially target the second extracellular loop of the cognate GPCR and activate the receptor in a non physiological manner by surpassing protective mechanisms of the target cell. Importantly, GPCR antagonists are able to abolish interaction of agAAB with the cognate receptor and may prevent the target tissue from damage [6].

In our laboratory we routinely analyze sera of patients for the presence of agAAB by means of a standardized bioassay based on the computer-assisted recording of the beating rate of spontaneously contracting cultured neonatal rat cardiomyocytes [8]. We studied the sera of 47 patients (13 females and 34 males) suffering from type 2 diabetes classified according to clinical criteria. Patients were on average (mean ± SD) 68 ± 10 years old with a body mass index mean of 32.1 ± 7.0 kg/m\(^2\), the duration of the disease was 14 ± 9 years, and HbA\(_1c\) level was 7.4 ± 1.5%. All patients were negative for \(\beta \)-cell autoantibodies. Immunoglobulin preparations of 25 sera out of 47 (53%) positively reacted in the bioassay. Next the agAAB spectrum of the 25 positive patients was further classified in respect to the targeted GPCR type by means of specific GPCR antagonists. We found that among these 25 sera, 9 (36%) contained agAAB directed against two types of GPCR, four (16%) were positive for agAAB directed against angiotensin II type 1 receptor and one (4%) was positive for \(\beta_1 \)-adrenergic receptor interacting agAAB. Sixty-four % of the positive patients (16 out of 25) harboured agAAB directed against the \(\alpha_1 \)-AR. Among these 16 patients 75% had elevated blood pressure or were under treatment with antihypertensives.

In a cohort of non-diabetic patients with established therapy refractory hypertension, 21 sera out of 57 (37%) were found positive for the presence of agAAB. Twenty sera out of these 21 (95%) contained agAAB directed against the \(\alpha_1 \)-AR. These data are consistent with a potential role of agAAB directed against the \(\alpha_1 \)-AR in the development of hypertension [7].

Our results show for the first time the occurrence of potentially pathogenic agAAB directed against GPCR in patients suffering from type 2 diabetes. The presence of agAAB that mainly interact with the \(\alpha_1 \)-AR suggests an increased risk of hypertension and vascular complications for diabetic patients. The association of agAAB with type 2 diabetes sheds new light on the therapeutic potential of clinically available GPCR antagonists. Furthermore, the role of intracellular calcium in the pathomechanism of agAAB strengthens the use of calcium antagonists [7]. Development of strategies to counteract agAAB role in type 2 diabetes is therefore important and relevant for the therapy of diabetic complications, in particular of high blood pressure and associated organ damages.
Acknowledgement

We thank Dr. V. Homuth and Dr. W. Derer, Franz Volhard Clinic, Helios-Klinikum Berlin, Germany, for kindly providing serum samples of non-diabetic patients with therapy refractory hypertension.

The present work was supported by the InnoRegio initiative of the German Federal Ministry of Education and Research, and by the ProFIT program of the European Community.

References